Bounds for the Least Squares Residual Using Scaled Total Least Squares
نویسندگان
چکیده
The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the data to make the corrected system compatible. In ordinary least squares (LS) the correction is restricted to the right hand side b, while in scaled total least squares (Scaled TLS) [10; 7] corrections to both b and A are allowed, and their relative sizes are determined by a real positive parameter γ. As γ → 0, the Scaled TLS solution approaches the LS solution. Fundamentals of the Scaled TLS problem are analyzed in our paper [7] and in the contribution in this book entitled Unifying least squares, total least squares and data least squares. This contribution is based on the paper [8]. It presents a theoretical analysis of the relationship between the sizes of the LS and Scaled TLS corrections (called the LS and Scaled TLS distances) in terms of γ. We give new upper and lower bounds on the LS distance in terms of the Scaled TLS distance, compare these to existing bounds, and examine the tightness of the new bounds. This work can be applied to the analysis of iterative methods which minimize the residual norm [9; 6].
منابع مشابه
Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods
Minimum residual norm iterative methods for solving linear systems Ax = b can be viewed as, and are often implemented as, sequences of least squares problems involving Krylov subspaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saunders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIA...
متن کاملBounds for the least squares distance using scaled total least squares
The standard approaches to solving overdetermined linear systems Bx ≈ c construct minimal corrections to the data to make the corrected system compatible. In ordinary least squares (LS) the correction is restricted to the right hand side c, while in scaled total least squares (STLS) [14, 12] corrections to both c and B are allowed, and their relative sizes are determined by a real positive para...
متن کاملA note on the scaled total least squares problem
In this note, we present two results on the scaled total least squares problem. First, we discuss the relation between the scaled total least squares and the least squares problems. We derive an upper bound for the difference between the scaled total least squares solution and the least squares solution and establish a quantitative relation between the scaled total least squares residual and th...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملUnifying Least Squares, Total Least Squares and Data Least Squares
The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...
متن کامل